Depleting TMED3 alleviates the development of endometrial carcinoma

Author:

Zhang Jin,Qi YueORCID

Abstract

Abstract Background As one of gynecologic tumors, endometrial carcinoma (EC) has been characterized by high incidence rate, but its molecular pathogenesis has remained unclear. TMED3 is a membrane protein and has been indicated to implicate several tumor-related diseases. In the current study, we aimed to explore the physiological function of TMED3 in EC progression. Methods Through bioinformatic analysis using The Cancer Genome Atlas database and immunohistochemistry assay on tissue microarray, we examined whether TMED3 was upregulated in EC tissues. After constructing TMED3-knockdown cell models via lentiviral transfection, qPCR and western blot were employed to determine the expression levels of TMED3 mRNA and protein. Then, Celigo cell counting assay, CCK8 assay, flow cytometry, wound-healing assay and Transwell assay were used to detect cell proliferation, cell cycle, cell apoptosis and cell migration, respectively. Results As a result, it was found that TMED3 was upregulated in EC cells, which was also verified in clinical samples. We then found that downregulation of TMED3 considerably restrained cell cycle, cell growth and migration but promoted apoptosis of EC cells. The following in-vivo experiments also verified that tumor growth was inhibited after TMED3 knockdown. The exploration in molecular mechanisms showed that TMED3 deletion may weaken cellular viability through upregulating pro-apoptotic proteins and targeting PI3K/AKT signaling pathways. Conclusions This study suggested that knocking down TMED3 affected the malignant phenotype of EC cells and thus limited tumor progression, which provided insights to the development of targeted drugs for EC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Genome-Wide Association Study Identified Novel Genetic Susceptibility Loci for Oral Cancer in Taiwan;International Journal of Molecular Sciences;2023-02-01

2. TMED family genes and their roles in human diseases;International Journal of Medical Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3