C1QTNF6 promotes oral squamous cell carcinoma by enhancing proliferation and inhibiting apoptosis

Author:

Song Xiaobin,Li Longjie,Shi Liang,Liu Xinyu,Qu Xun,Wei Fengcai,Wang KetaoORCID

Abstract

Abstract Background C1QTNF6 (CTRP6), a member of the CTRP family, has recently been implied to play a role in the tumorigenesis of for a variety of cancer types. However, the role of C1QTNF6 in oral squamous cell carcinoma (OSCC) and its potential molecular remains unclear. Methods C1QTNF6 expression was detected by qRT-PCR and western blot analysis. Lentiviral vectors were constructed to knockdown C1QTNF6 in CaL27 and SCC-9 human OSCC cell lines. Cell viability, cell cycle and cell apoptosis analyses were performed by MTT assay, PI/Annexin V staining, and flow cytometry. The effect of C1QTNF6 knockdown on in vivo tumorigenicity of OSCC cells in vivo was evaluated using nude mouse xenograft tumor model. Downstream signaling mechanisms were identified by microarray and Ingenuity Pathway Analysis. Results Immunohistochemistry of OSCC tissue and data from TCGA demonstrate that C1QTNF6 was overexpressed in OSCC tissues, and that cellular proliferation was significantly decreased after C1QTNF6 was knockdown in CaL27 and SCC-9 cell lines. Knockdown of C1QTNF6 also resulted in cell cycle arrest at the G2/M phase and enhanced cell apoptosis in in CaL27 and SCC-9 cell lines. Furthermore, knockdown of C1QTNF6 in Cal-27 cells inhibited tumor growth of OSCC in vivo. Microarray analysis revealed that C1QTNF6 silencing resulted in significant alterations of gene expression, with the Acute Phase Response signaling pathway significantly activated following C1QTNF6 silencing. Conclusions These results suggest that C1QTNF6 plays an important role in promoting OSCC tumorigenesis, which indicates that C1QTNF6 may comprise a promising therapeutic target for OSCC treatment.

Funder

key technology research and development program of shandong

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3