Single cell RNA-seq data and bulk gene profiles reveal a novel signature of disease progression in multiple myeloma

Author:

Zeng Zhiyong,Lin Junfang,Zhang Kejie,Guo Xizhe,Zheng Xiaoqiang,Yang Apeng,Chen JunminORCID

Abstract

Abstract Background The development of multiple myeloma (MM) is considered to involve a multistep transformation process, but the role of cytogenetic abnormalities and molecular alterations in determining the cell fate of multiple myeloma (MM) remains unclear. Here, we have analyzed single cell RNA-seq data and bulk gene profiles to reveal a novel signature associated with MM development. Methods The scRNA-seq data from GSE118900 was used to profile the transcriptomes of cells from MM patients at different stages. Pseudotemporal ordering of the single cells was performed using Monocle package to feature distinct transcriptomic states of the developing MM cells. The bulk microarray profiles from GSE24080 and GSE9782 were applied to identify a signature associated with MM development. Results The 597 cells were divided into 7 clusters according to different risk levels. They were initiated mainly from monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed MM (NDMM), or relapsed and/or refractory myeloma (RRMM) with cytogenetically favorable t(11;14), moved towards the cells from smoldering MM (SMM) or NDMM without t(11;14) or t(4;14), and then finally to cells from SMM or RRMM with t(4;14). Based on the markers identified in the late stage, the bulk data was used to develop a 20-gene signature stratifying patients into high and low-risk groups (GSE24080: HR = 3.759, 95% CI 2.746–5.145; GSE9782: HR = 2.612, 95% CI 1.894–3.603), which was better than the previously published gene signatures (EMC92, UAMS70, and UAMS17) and International Staging System. This signature also succeeded in predicting the clinical outcome of patients treated with bortezomib (HR = 2.884, 95% CI 1.994–4.172, P = 1.89e−8). The 20 genes were further verified by quantitative real-time polymerase chain reaction using samples obtained from the patients with MM. Conclusion Our comprehensive analyses offered new insights in MM development, and established a 20-gene signature as an independent biomarker for MM.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Clinical research project of Wu Jieping Medical Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3