Abstract
Abstract
Background
Papillary thyroid cancer (PTC) is a type of malignant tumor with excellent prognosis, accounting for more than 80% of thyroid cancer. Recently, numerous studies illustrated the importance of N6-methyladenosine (m6A) RNA modification to tumorigenesis, but it has never been reported in PTC.
Methods
We downloaded data from The Cancer Genome Atlas (TCGA) and analyzed RNA expression, single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) of 19 m6A RNA methylation regulators in PTC. Then we used nonnegative matrix factorization (NMF) to cluster patients into two m6A subtypes and compared them in overall survival (OS) and disease-free survival (DFS). The Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used to select genes for the construction of a m6A-related signature. The accuracy and prognostic value of this signature were validated by using receiver operating characteristic (ROC) curves, K-M (Kaplan–Meier) survival analysis, univariant and multivariant analyses.
Results
CNVs and differential expression of m6A regulators were observed in PTC patients. Especially IGF2BP2 (Insulin-like growth factor 2 mRNA binding protein 2), which was most significantly overexpressed in tumor tissue. We chose 4 genes in the m6A-related module from WGCNA: IGF2BP2, STT3A, MTHFD1 and GSTM4, and used them to construct a m6A-related signature. The prognostic value of this signature was validated, and risk scores provided by the signature was the independent prognostic factor for PTC. A nomogram was also provided for clinical usage.
Conclusions
We performed a comprehensive evaluation of the m6A RNA modification landscape of PTC and explored its underlying mechanisms. Our m6A-related signature was of great significance in predicting the DFS of patients with PTC. And IGF2BP2 was a gene worthy for further analysis as its strong correlation with DFS and clinical phenotypes of PTC.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference37 articles.
1. Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet. 2016;388(10061):2783–95.
2. Kitahara CM, Schneider AB, Brenner AV. Thyroid cancer schottenfeld and fraumeni cancer epidemiology and prevention, vol. 1. Oxford: Oxford University Press; 2017. p. 278–94.
3. Schneider DF, Chen H. New developments in the diagnosis and treatment of thyroid cancer. CA Cancer J Clin. 2013;63(6):373–94.
4. Elisei R. Thyroid carcinoma. encyclopedia of endocrine diseases. New York: Elsevier; 2018. p. 573–85.
5. Wada N, Sugino K, Mimura T, Nagahama M, Kitagawa W, Shibuya H, et al. Pediatric differentiated thyroid carcinoma in stage I: risk factor analysis for disease free survival. BMC Cancer. 2009;9(1):306.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献