Comprehensive characterization of B7 family members in breast cancer: B7-H5 switch reverses breast cancer from “immuno-cold” into “immuno-hot” status

Author:

Liu Jiayu,Wang Cenzhu,Jiang Ying,Zhou Yunxu,Chen Lingyan,Qian Zhiwen,Liu Lu,Wu Danping,Zhang Yan

Abstract

AbstractThe members of the classic B7 family regulate the immune microenvironment of several malignant tumors. However, the potential relationship between the B7 family and the breast cancer (BrCa) tumor immune microenvironment has remained elusive. In the present study, we provide a comprehensive explanation of the expression, clinical significance, mutation, and immune cell infiltration of B7 family molecules in BrCa. First, we recruited 10 patients with BrCa surgery from the Wuxi Maternal and Child Health Hospital and performed single-cell RNA sequencing (scRNA-seq) analysis to investigate the distribution of B7 family members in multiple immune cell subsets. We focused on B7-2, B7-H3, and B7-H5 molecules of the B7 family and constructed tumor microarrays by self-recruiting patients to perform multiple immunohistochemical (mIHC) analyses and study tumor expression of B7-2, B7-H3, B7-H5 and CD8+ immune cell infiltration. B7-H5 displayed a strong correlation with CD8+ immune cell infiltration. In summary, B7-H5 provides a new perspective for the identification of immunothermal subtypes of BrCa and could function as a switch to reverse BrCa from an “immunologically cold” state to an “immunologically hot” state. Graphical abstract

Funder

Graduate Research and Innovation Projects of Jiangsu Province

General Program of Wuxi Medical Center of Nanjing Medical University

Doctoral Talent Fund of the Affiliated Wuxi People’s Hospital of Nanjing Medical University

Wuxi Science and Technology Bureau

Wuxi Double-Hundred Talent Fund Project

Wuxi Health Commission Precision Medicine Project

Jiangsu Provincial Maternal and Child Health Research Project

Jiangsu Provincial Six Talent Peaks Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3