An estrogen-regulated long non-coding RNA NCALD promotes luminal breast cancer proliferation by activating GRHL2

Author:

Meng Yue,Zhou Dianrong,Luo Ying,Chen Jierong,Li Hui

Abstract

Abstract Purpose Luminal breast cancer (BC) is a prevalent subtype associated with an increased risk of late disease recurrence and mortality. Long noncoding RNAs (lncRNAs) likely play significant roles in regulating tissue-specific gene expression during tumorigenesis. However, the biological function and underlying mechanisms of specific dysregulated lncRNAs in luminal BC remain largely unknown, which has drawn our attention. Methods The expression pattern of lncRNA NCALD in luminal BC was predicted and validated in collected tissue samples. Following cell transfection with knockdown of lncRNA NCALD and ESR1 and overexpression of GRHL2 and ESR1, we investigated the interactions among lncRNA NCALD, ESR1, and GRHL2. Additionally, their regulatory functions in luminal BC cell biological processes were studied. Subsequently, a xenograft tumor model was prepared for validation. Results Our study identified a specific overexpression of the lncRNA NCALD in luminal BC, which correlated with an unfavorable prognosis. Suppression of lncRNA NCALD or ESR1 led to inhibition of GRHL2 expression, while concurrent overexpression of ESR1 and lncRNA NCALD potentially elevated GRHL2 expression. Mechanistically, ERα may drive the expression of lncRNA NCALD. Furthermore, the 1–151 nt fragment of lncRNA NCALD was found to recruit ERα and interact with its oest-Recep domain located in the promoter region of GRHL2, ultimately inducing GRHL2 transcription. Conclusions These findings reveal the involvement of lncRNA NCALD and its specific expression pattern in luminal BC. Targeting lncRNA NCALD could be a potential therapeutic strategy for delaying the progression of BC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3