Author:
Meng Yue,Zhou Dianrong,Luo Ying,Chen Jierong,Li Hui
Abstract
Abstract
Purpose
Luminal breast cancer (BC) is a prevalent subtype associated with an increased risk of late disease recurrence and mortality. Long noncoding RNAs (lncRNAs) likely play significant roles in regulating tissue-specific gene expression during tumorigenesis. However, the biological function and underlying mechanisms of specific dysregulated lncRNAs in luminal BC remain largely unknown, which has drawn our attention.
Methods
The expression pattern of lncRNA NCALD in luminal BC was predicted and validated in collected tissue samples. Following cell transfection with knockdown of lncRNA NCALD and ESR1 and overexpression of GRHL2 and ESR1, we investigated the interactions among lncRNA NCALD, ESR1, and GRHL2. Additionally, their regulatory functions in luminal BC cell biological processes were studied. Subsequently, a xenograft tumor model was prepared for validation.
Results
Our study identified a specific overexpression of the lncRNA NCALD in luminal BC, which correlated with an unfavorable prognosis. Suppression of lncRNA NCALD or ESR1 led to inhibition of GRHL2 expression, while concurrent overexpression of ESR1 and lncRNA NCALD potentially elevated GRHL2 expression. Mechanistically, ERα may drive the expression of lncRNA NCALD. Furthermore, the 1–151 nt fragment of lncRNA NCALD was found to recruit ERα and interact with its oest-Recep domain located in the promoter region of GRHL2, ultimately inducing GRHL2 transcription.
Conclusions
These findings reveal the involvement of lncRNA NCALD and its specific expression pattern in luminal BC. Targeting lncRNA NCALD could be a potential therapeutic strategy for delaying the progression of BC.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC