Author:
Hussein Deema,Alsereihi Reem,Salwati Abdulla Ahmed A.,Algehani Rinad,Alhowity Alazouf,Al-Hejin Ahmed M.,Schulten Hans-Juergen,Baeesa Saleh,Bangash Mohammed,Alghamdi Fahad,Cross Richard,Al Zughaibi Torki,Saka Mohamad,Chaudhary Adeel,Abuzenadah Adel
Abstract
Abstract
Background
Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells.
Methods
Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan.
Results
Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line.
Conclusions
AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.
Funder
Research & Development Office, Ministry of Education, Kingdom of Saudi Arabia
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference98 articles.
1. Wen PY, Packer RJ. The 2021 WHO classification of tumors of the central nervous system: clinical implications. Neuro Oncol. 2021;23(8):1215–7.
2. Alexopoulos G, Zhang J, Karampelas I, Patel M, Kemp J, Coppens J, Mattei TA, Mercier P. Long-term time series forecasting and updates on survival analysis of glioblastoma multiforme, a 1975–2018 population-based study. Neuroepidemiology. 2022;56(2):75–89.
3. Cosnarovici MM, Cosnarovici RV, Piciu D. Updates on the 2016 World Health Organization classification of pediatric tumors of the central nervous system—a systematic review. Med Pharm Rep. 2021;94(3):282–8.
4. Stylli SS. Novel treatment strategies for glioblastoma-a summary. Cancers. 2021;13(22):5868–72.
5. Weller M, Reifenberger G. Beyond the World Health Organization classification of central nervous system tumors 2016: what are the new developments for gliomas from a clinician’s perspective? Curr Opin Neurol. 2020;33(6):701–6.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献