Abstract
Abstract
Background
Pancreatic cancer (PC) is a highly fatal and aggressive disease with its incidence and mortality quite discouraging. An effective prediction model is urgently needed for the accurate assessment of patients’ prognosis to assist clinical decision-making.
Methods
Gene expression data and clinicopathological data of the samples were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases. Differential expressed genes (DEGs) analysis, univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, random forest screening and multivariate Cox regression analysis were applied to construct the risk signature. The effectiveness and independence of the model were validated by time-dependent receiver operating characteristic (ROC) curve, Kaplan–Meier (KM) survival analysis and survival point graph in training set, test set, TCGA entire set and GSE57495 set. The validity of the core gene was verified by immunohistochemistry and our own independent cohort. Meanwhile, functional enrichment analysis of DEGs between the high and low risk groups revealed the potential biological pathways. Finally, CMap database and drug sensitivity assay were utilized to identify potential small molecular drugs as the risk model-related treatments for PC patients.
Results
Four histone modification-related genes were identified to establish the risk signature, including CBX8, CENPT, DPY30 and PADI1. The predictive performance of risk signature was validated in training set, test set, TCGA entire set and GSE57495 set, with the areas under ROC curve (AUCs) for 3-year survival were 0.773, 0.729, 0.775 and 0.770 respectively. Furthermore, KM survival analysis, univariate and multivariate Cox regression analysis proved it as an independent prognostic factor. Mechanically, functional enrichment analysis showed that the poor prognosis of high-risk population was related to the metabolic disorders caused by inadequate insulin secretion, which was fueled by neuroendocrine aberration. Lastly, a cluster of small molecule drugs were identified with significant potentiality in treating PC patients.
Conclusions
Based on a histone modification-related gene signature, our model can serve as a reliable prognosis assessment tool and help to optimize the treatment for PC patients. Meanwhile, a cluster of small molecule drugs were also identified with significant potentiality in treating PC patients.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference96 articles.
1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;68(6):394–424.
3. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008–20.
4. Tempero MA. NCCN guidelines updates: pancreatic cancer. JNCCN. 2019;17(5.5):603–5.
5. van Roessel S, Kasumova GG, Verheij J, Najarian RM, Maggino L, de Pastena M, Malleo G, Marchegiani G, Salvia R, Ng SC, et al. International validation of the eighth edition of the American Joint Committee on Cancer (AJCC) TNM staging system in patients with resected pancreatic cancer. JAMA Surg. 2018;153(12):e183617.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献