GAD1 contributes to the progression and drug resistance in castration resistant prostate cancer

Author:

Wan Lilin,Liu Yifan,Liu Ruiji,Mao Weipu

Abstract

Abstract Background Prostate cancer is currently the second most lethal malignancy in men worldwide due to metastasis and invasion in advanced stages. Studies have revealed that androgen deprivation therapy can induce stable remission in patients with advanced prostate cancer, although most patients will develop castration-resistant prostate cancer (CRPC) in 1–2 years. Docetaxel and enzalutamide improve survival in patients with CRPC, although only for a short time, eventually patients develop primary or secondary resistance, causing disease progression or biochemical relapse. Methods The gene expression profiles of docetaxel-sensitive or -resistant prostate cancer cell lines, namely GSE33455, GSE36135, GSE78201, GSE104935, and GSE143408, were sequentially analyzed for differentially expressed genes and progress-free interval significance. Subsequently, the overall survival significance and clinic-pathological features were analyzed by the R package. The implications of hub genes mutations, methylation in prostate cancer and the relationship with the tumor immune cell infiltration microenvironment were assessed with the help of cBioPortal, UALCAN and TISIDB web resources. Finally, effects of the hub genes on the progression and drug resistance in prostate cancer were explored using reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, cell phenotype, and drug sensitivity. Result Glutamate decarboxylase 1 (GAD1) was tentatively identified by bioinformatic analysis as an hub gene for the development of drug resistance, including docetaxel and enzalutamide, in prostate cancer. Additionally, GAD1 expression, mutation and methylation were significantly correlated with the clinicopathological features and the tumor immune microenvironment. RT-PCR, immunohistochemistry, cell phenotype and drug sensitivity experiments further demonstrated that GAD1 promoted prostate cancer progression and decreased the therapeutic effect of docetaxel or enzalutamide. Conclusion This research confirmed that GAD1 was a hub gene in the progression and development of drug resistance in prostate cancer. This helped to explain prostate cancer drug resistance and provides new immune-related therapeutic targets and biomarkers for it.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3