The sensitivity of acute myeloid leukemia cells to cytarabine is increased by suppressing the expression of Heme oxygenase-1 and hypoxia-inducible factor 1-alpha

Author:

Sadeghi Mohammad,Moslehi Asma,Kheiry Hadiseh,Kiani Fariba Karoon,Zarei Asieh,Khodakarami Atefeh,Karpisheh Vahid,Masjedi Ali,Rahnama Badrossadat,Hojjat-Farsangi Mohammad,Raeisi Mortaza,Yousefi Mehdi,Movasaghpour Akbari Ali Akbar,Jadidi-Niaragh Farhad

Abstract

Abstract Background Acute myeloid leukemia (AML), a malignancy Often resistant to common chemotherapy regimens (Cytarabine (Ara-c) + Daunorubicin (DNR)), is accompanied by frequent relapses. Many factors are involved in causing chemoresistance. Heme Oxygenase-1 (HO-1) and Hypoxia-Inducible Factor 1-alpha (HIF-1α) are two of the most well-known genes, reported to be overexpressed in AML and promote resistance against chemotherapy according to several studies. The main chemotherapy agent used for AML treatment is Ara-c. We hypothesized that simultaneous targeting of HO-1 and HIF-1α could sensitize AML cells to Ara-c. Method In this study, we used our recently developed, Trans-Activator of Transcription (TAT) - Chitosan-Carboxymethyl Dextran (CCMD) - Poly Ethylene Glycol (PEG) - Nanoparticles (NPs), to deliver Ara-c along with siRNA molecules against the HO-1 and HIF-1α genes to AML primary cells (ex vivo) and cell lines including THP-1, KG-1, and HL-60 (in vitro). Subsequently, the effect of the single or combinational treatment on the growth, proliferation, apoptosis, and Reactive Oxygen Species (ROS) formation was evaluated. Results The designed NPs had a high potential in transfecting cells with siRNAs and drug. The results demonstrated that treatment of cells with Ara-c elevated the generation of ROS in the cells while decreasing the proliferation potential. Following the silencing of HO-1, the rate of apoptosis and ROS generation in response to Ara-c increased significantly. While proliferation and growth inhibition were considerably evident in HIF-1α-siRNA-transfected-AML cells compared to cells treated with free Ara-c. We found that the co-inhibition of genes could further sensitize AML cells to Ara-c treatment. Conclusions As far as we are aware, this study is the first to simultaneously inhibit the HO-1 and HIF-1α genes in AML using NPs. It can be concluded that HO-1 causes chemoresistance by protecting cells from ROS damage. Whereas, HIF-1α mostly exerts prolific and direct anti-apoptotic effects. These findings imply that simultaneous inhibition of HO-1 and HIF-1α can overcome Ara-c resistance and help improve the prognosis of AML patients.

Funder

Tabriz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3