Loss of two-pore channel 2 function in melanoma-derived tumours reduces tumour growth in vivo but greatly increases tumour-related toxicity in the organism

Author:

Hanbashi Ali,Alotaibi Moureq,Sobeai Homood M. As,Binobaid Lama,Alhazzani Khalid,Jin Xuhui,Kamli Faroq,Alhoshani Ali,Parrington John

Abstract

Abstract Background Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. Methods The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis Results TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. Conclusions The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3