The regulation of miR-320a/XBP1 axis through LINC00963 for endoplasmic reticulum stress and autophagy in diffuse large B-cell lymphoma

Author:

Cui Yuying,Xu Hui,Yang Yu,Zhao Dongmei,Wen Yu,Lv Chao,Qiu Hongbin,Wang ChennanORCID

Abstract

Abstract Background This study incorporates fundamental research referring to considerable amounts of gene-sequencing data and bioinformatics tools to analyze the pathological mechanisms of diffuse large B-cell lymphoma (DLBCL). Methods A lncRNA-miRNA-mRNA ceRNA network of DLBCL was constructed through database analysis combining GTEx and TCGA. qPCR was used to detect the expression of LINC00963 and miR-320a in DLBCL cell lines. After LINC00963 or miR-320a overexpression in vitro, western blot was performed to assess the protein levels of UPR sensors (GRP78, p-IRE1, IRE1, active ATF6, ATF4 and XBP1), along with apoptosis markers (Bcl-2, Bax, caspase 3) and autophagy indicators (Beclin1, LC3II, LC3I and p62). Additionally, the expression of LC3 was analyzed through immunofluorescence (IF) assay.  Results Following LINC00963 overexpression in vitro, SUDHL4 cell line showed a marked increase in the level of UPR-related GRP78, p-IRE1 and spliced XBP-1/XBP-1(s), apoptosis-related Bax and cleaved caspase 3, as well as autophagy-related Beclin1 and LC3II, whereas miR-320a mimic greatly diminished the effects of LINC00963 overexpression. Moreover, LINC00963 targeted miR-320a while miR-320a bound to the 3’UTR of XBP1. It was also found that LINC00963 overexpression resulted in significantly delayed tumor growth in a xenograft model of DLBCL.  Conclusion Mechanistically, LINC00963/miR-320a regulated XBP1-apoptosis pathway and autophagy, implying the therapeutic potential of this pathway for selective targeting. The data presented here illustrated the mechanism of LINC00963/miR-320a/XBP1 in DLBCL for the first time.

Funder

Scientific Research Fund of Heilongjiang Provincial Education Department

North Medicine and Functional Food Characteristic Subject Project in Heilongjiang Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3