Activating transcription factor 5 (ATF5) promotes tumorigenic capability and activates the Wnt/b-catenin pathway in bladder cancer

Author:

Zhou Junhao,Tian Hu,Zhi Xi,Xiao Zhuoyu,Chen Taoyi,Yuan Haoyu,Chen Qi,Chen Mingkun,Yang Jiankun,Zhou Qizhao,Xue Kangyi,Guo Wenbin,Xia Ming,Bao Jiming,Yang Cheng,Duan Haifeng,Wang Hongyi,Huang Zhipeng,Zhu Ting,Liu CundongORCID

Abstract

Abstract Background In bladder cancer, up to 70% of patients will relapse after resection within 5 years, in which the mechanism underlying the recurrence remains largely unclear. Methods Quantitative real-time PCR, western blot and immunohistochemistry were conducted. The assays of tumor sphere formation and tumor xenograft were further performed to assess the potential biological roles of ATF5 (activating transcription factor 5). Chromatin immunoprecipitation-qPCR and luciferase activity assays were carried out to explore the potential molecular mechanism. A two-tailed paired Student's t-test, χ2 test, Kaplan Meier and Cox regression analyses, and Spearman's rank correlation coefficients were used for statistical analyses. Results ATF5 is elevated in bladder urothelial cancer (BLCA) tissues, especially in recurrent BLCA, which confers a poor prognosis. Overexpressing ATF5 significantly enhanced, whereas silencing ATF5 inhibited, the capability of tumor sphere formation in bladder cancer cells. Mechanically, ATF5 could directly bind to and stimulate the promoter of DVL1 gene, resulting in activation of Wnt/β-catenin pathway. Conclusions This study provides a novel insight into a portion of the mechanism underlying high recurrence potential of BLCA, presenting ATF5 as a prognostic factor or potential therapeutic target for preventing recurrence in BLCA.

Funder

Guangzhou Science and Technology Planning Project

National Natural Science Foundation of China

Youth Project of The Third Affiliated Hospital of Southern Medical University

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3