IFI35 is involved in the regulation of the radiosensitivity of colorectal cancer cells

Author:

Hu Yan,Wang Bing,Yi Ke,Lei Qingjun,Wang Guanghui,Xu XiaohuiORCID

Abstract

Abstract Background Interferon regulatory factor-1 (IRF1) affects the proliferation of colorectal cancer (CRC). Recombinant interferon inducible protein 35 (IFI35) participates in immune regulation and cell proliferation. The aim of the study was to examine whether IRF1 affects the radiation sensitivity of CRC by regulating IFI35. Methods CCL244 and SW480 cells were divided into five groups: blank control, IFI35 upregulation, IFI35 upregulation control, IFI35 downregulation, and IFI35 downregulation control. All groups were treated with X-rays (6 Gy). IFI35 activation by IRF1 was detected by luciferase reporter assay. The GEPIA database was used to examine IRF1 and IFI35 in CRC. The cells were characterized using CCK-8, EdU, cell cycle, clone formation, flow cytometry, reactive oxygen species (ROS), and mitochondrial membrane potential. Nude mouse animal models were used to detect the effect of IFI35 on CRC. Results IRF1 can bind to the IFI35 promoter and promote the expression of IFI35. The expression consistency of IRF1 and IFI35 in CRC, according to GEPIA (R = 0.68, p < 0.0001). After irradiation, the upregulation of IFI35 inhibited cell proliferation and colony formation and promoted apoptosis and ROS, while IFI35 downregulation promoted proliferation and colony formation and reduced apoptosis, ROS, and mitochondrial membrane potential were also reduced. The in vivo experiments supported the in vitro ones, with smaller tumors and fewer liver metastases with IFI35 upregulation. Conclusions IRF1 can promote IFI35 expression in CRC cells. IFI35 is involved in the regulation of radiosensitivity of CRC cells and might be a target for CRC radiosensitization.

Funder

National Natural Science Foundation of China

Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province

Gusu Health Talents Training Project

Jiangsu Province Graduate Research and Practice Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3