MiR-924 as a tumor suppressor inhibits non-small cell lung cancer by inhibiting RHBDD1/Wnt/β-catenin signaling pathway

Author:

Wang Huaishi,Chen Xi,Yang Baishuang,Xia Zhi,Chen QiongORCID

Abstract

Abstract Background MiR-924 has been reported to be a tumor suppressor in hepatocellular carcinoma. However, the functions and mechanisms of miR-924 in non-small cell lung cancer (NSCLC) remain unclear. Methods The expression of miR-924 was determined in NSCLC tissues and cell lines using quantitative real time PCR. The Chi-squared test was used to evaluate the correlation between miR-924 levels and clinicopathological parameters in patients with NSCLC. Cell proliferation was assessed by CCK-8 assay. Cell migration and invasion were detected by transwell assay. The combination of miR-924 and RHBDD1 was analyzed via the luciferase reporter assay. The expression level of RHBDD1 was evaluated in lung cancer tissues using public microarray datasets form Oncomine and its prognostic value was assessed by Kaplan–Meier Plotter databases. A tumor xenograft mouse model was established to illustrate the effects of miR-924 on the tumorigenesis of NSCLC in vivo. Results In this study, we found miR-924 was strikingly decreased in NSCLC tissues and cell lines. Decreased miR-924 was closely correlated with advanced tumor-node-metastasis (TNM) stage and lymphatic metastasis in NSCLC patients. Noticeably, rhomboid domain-containing protein 1 (RHBDD1) was predicted and confirmed as a direct target of miR-924. Moreover, the expression level of RHBDD1 was significantly increased and inversely associated with prognosis using public microarray datasets form Oncomine and Kaplan–Meier Plotter databases. MiR-924 overexpression suppressed cell proliferation, migration and invasion. The in vivo experiments further demonstrated that miR-924 overexpression reduced NSCLC xenograft growth through inhibiting RHBDD1/Wnt/β-catenin signaling pathway. Conclusions In summary, these findings demonstrated that miR-924 blocked the progression of NSCLC by targeting RHBDD1 and miR-924/RHBDD1 axis might provide a novel therapeutic target for the treatment of NSCLC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3