Toxoplasma gondii suppresses proliferation and migration of breast cancer cells by regulating their transcriptome

Author:

Ye Hengming,Zhou Xiaotao,Zhu Bike,Xiong Tiantian,Huang Weile,He Feng,Li Hui,Chen Lihua,Tang Luying,Ren Zefang

Abstract

Abstract Background Breast cancer is the most common cancer in women worldwide. Toxoplasma gondii (T. gondii) has shown anticancer activity in breast cancer mouse models, and exerted beneficial effect on the survival of breast cancer patients, but the mechanism was unclear. Methods The effect of tachyzoites of T. gondii (RH and ME49 strains) on human breast cancer cells (MCF-7 and MDA-MB-231 cells) proliferation and migration was assessed using cell growth curve and wound healing assays. Dual RNA-seq was performed for T. gondii-infected and non-infected cells to determine the differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein–Protein Interaction Networks analysis (PPI) were performed to explore the related signaling pathway and hub genes. Hub genes were validated using the Kaplan–Meier plotter database, and Pathogen Host Interaction (PHI-base) database. The results were verified by qRT-PCR. Results The tachyzoites of T. gondii decreased the expression of Ki67 and increased the expression of E-cadherin, resulting in suppressing the proliferation and migration of infected human breast cancer cells. The inhibitory effect of T. gondii on breast cancer cells showed a significant dose–response relationship. Compared with the control group, 2321 genes were transcriptionally regulated in MCF-7 cells infected with T. gondii, while 169 genes were transcriptionally regulated in infected MDA-MB-231 cells. Among these genes, 698 genes in infected MCF-7 cells and 67 genes in infected MDA-MB-231 cells were validated by the publicly available database. GO and KEGG analyses suggested that several pathways were involved in anticancer function of T. gondii, such as ribosome, interleukin-17 signaling, coronavirus disease pathway, and breast cancer pathway. BRCA1, MYC and IL-6 were identified as the top three hub genes in infected-breast cancer cells based on the connectivity of PPI analysis. In addition, after interacting with breast cancer cells, the expression of ROP16 and ROP18 in T. gondii increased, while the expression of crt, TgIST, GRA15, GRA24 and MIC13 decreased. Conclusions T. gondii transcriptionally regulates several signaling pathways by altering the hub genes such as BRCA1, MYC and IL-6, which can inhibit the breast tumor growth and migration, hinting at a potential therapeutic strategy.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province, China

Publisher

Springer Science and Business Media LLC

Reference57 articles.

1. Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet (London, England). 2004;363(9425):1965–76.

2. Saeij JP, Boyle JP, Boothroyd JC. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol. 2005;21(10):476–81.

3. Hosseini SA, Amouei A, Sharif M, Sarvi S, Galal L, Javidnia J, Pagheh AS, Gholami S, Mizani A, Daryani A. Human toxoplasmosis: a systematic review for genetic diversity of Toxoplasma gondii in clinical samples. Epidemiol Infect. 2018;147:1–9.

4. Bigna JJ, Tochie JN, Tounouga DN, Bekolo AO, Ymele NS, Youda EL, Sime PS, Nansseu JR. Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: a systematic review, modelling and meta-analysis. Sci Rep. 2020;10(1):12102.

5. Marín-García PJ, Planas N, Llobat L. Toxoplasma gondii in foods: prevalence, control, and safety. Foods (Basel, Switzerland). 2022;11:16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3