TRIM36 inhibits tumorigenesis through the Wnt/β-catenin pathway and promotes caspase-dependent apoptosis in hepatocellular carcinoma

Author:

Tong Qing,Yi Mingyu,Kong Panpan,Xu Lin,Huang Wukui,Niu Yue,Gan Xiaojing,Zhan Huan,Tian Rui,Yan DongORCID

Abstract

Abstract Background Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has an extremely poor prognosis. We aimed to determine the latent relationships between TRIM36 regulation of apoptosis and the Wnt/β-catenin pathway in HCC. Methods Immunohistochemistry and western blotting were used to characterize the aberrant expression of TRIM36 in HCC and adjacent tissues. Clinical information was analyzed using Kaplan–Meier and Cox methods. RNA-seq of potential targets was conducted to detect the regulation of TRIM36. Apoptosis assays and cellular proliferation, invasion and migration were conducted in a loss- and gain-of-function manner in cultured cells to determine the biological functions of TRIM36. A rescue experiment was conducted to confirm the role of Wnt/β-catenin signaling in TRIM36 regulation. Finally, in vivo experiments were conducted using cell line-derived xenografts in nude mice to validate the central role of TRIM36 in HCC. Results TRIM36 expression was significantly downregulated in HCC tissues compared to adjacent non-tumor tissues. TRIM36 repressed the proliferation, migration, and invasion of Huh7 and HCCLM3 cells, whereas it stimulated apoptosis. Wnt/β-catenin signaling was inhibited by TRIM36, and rescue experiments highlighted its importance in HCC proliferation, migration, and invasion. In vivo experiments further confirmed the effects of sh-TRIM36 on HCC tumorigenesis, inhibition of apoptosis, and promotion of Wnt/β-catenin signaling. Conclusion Our study is the first to indicate that TRIM36 acts as a tumor suppressor in HCC. TRIM36 activates apoptosis and inhibits cellular proliferation, invasion, and migration via the Wnt/β-catenin pathway, which may serve as an important biomarker and promising therapeutic target for HCC.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3