Cell surface GRP78: a potential mechanism of therapeutic resistant tumors

Author:

Amaresan Rajalakshmi,Gopal UdhayakumarORCID

Abstract

AbstractGRP78 is a protein that acts as a chaperone within the endoplasmic reticulum (ER) and has multiple functions. It is induced by stress and abets cells from survival. Despite, multiple Stress conditions like ER, chronic psychological and nutritional stress, hypoxia, chemotherapy, radiation therapy, and drug resistance induce cell surface GRP78 (CS-GRP78) expression in cancer cells. Further, CS-GRP78 is associated with increased malignancy and resistance to anti-cancer therapies and is considered a high-value druggable target. Recent preclinical research suggests that targeting CS-GRP78 with anti-GRP78 monoclonal antibodies (Mab) in combination with other agents may be effective in reversing the failure of chemotherapy, radiotherapy, or targeted therapies and increasing the efficacy of solid tumors treatment. This article will review recent evidence on the role of CS-GRP78 in developing resistance to anti-cancer treatments and the potential benefits of combining anti-GRP78 Mab with other cancer therapies for specific patient populations. Furthermore, our limited understanding of how CS-GRP78 regulated in human studies is a major drawback for designing effective CS-GRP78-targeted therapies. Hence, more research is still warranted to translate these potential therapies into clinical applications.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3