The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis

Author:

Zhao Chengpeng,Ling Xiaoling,Xia Yunxia,Yan Bingxue,Guan QuanlinORCID

Abstract

Abstract Background Previous studies have revealed the key functions of N6-methyladenosine (m6A) modification in breast cancer (BC). MALAT1 as a highly m6A modified lncRNA associated with cancer development and metastasis, but the functional relevance of m6A methyltransferase and MALAT1 in BC is still unknown. Here, our study investigated the effects of the novel m6A methyltransferase METTL3 on epithelial-mesenchymal transition (EMT) in BC via the MALAT1/miR-26b/HMGA2 axis. Methods Firstly, we collected clinical BC samples and cultured BC cells, and detected mRNA and protein levels in the human samples and human cell lines by RT-qPCR and Western blot, respectively. Then, the binding of MALAT1 and miR-26b and the targeting relationship between miR-26b and HMGA2 were examined by dual-luciferase assay. Moreover, the binding of MALAT1 and miR-26b was tested by RNA pull down and RNA immunoprecipitation (RIP) assays. Methylated-RNA immunoprecipitation (Me-RIP) was used to detect the m6A modification level of MALAT1. The interaction of METTL3 and MALAT1 was detected by photoactivatable ribonucleoside-crosslinking immunoprecipitation (PAR-CLIP). Finally, effects on invasion and migration were detected by Transwell. Results In BC, the level of miR-26b was consistently low, while the levels of METTL3, MALAT1 and HMGA2 were high. Further experiments showed that METTL3 up-regulated MALAT1 expression by modulating the m6A modification of MALAT1, and that MALAT1 could promote the expression of HMGA2 by sponging miR-26b. In BC cells, we found that silencing METTL3 could inhibit EMT and tumor cell invasion by suppressing MALAT1. Furthermore, MALAT1 mediated miR-26b to target HMGA2 and promote EMT, migration, and invasion. In summary, METTL3 promoted tumorigenesis of BC via the MALAT1/miR-26b/HMGA2 axis. Conclusions Silencing METTL3 down-regulate MALAT1 and HMGA2 by sponging miR-26b, and finally inhibit EMT, migration and invasion in BC, providing a theoretical basis for clinical treatment of BC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3