Integrated profiling identifies DXS253E as a potential prognostic marker in colorectal cancer

Author:

Xing Pu,Hao Hao,Chen Jiangbo,Qiao Xiaowen,Song Tongkun,Yang Xinying,Weng Kai,Hou Yifan,Chen Jie,Wang Zaozao,Di Jiabo,Jiang Beihai,Xing Jiadi,Su Xiangqian

Abstract

Abstract Background Increasing evidence suggests that DXS253E is critical for cancer development and progression, but the function and potential mechanism of DXS253E in colorectal cancer (CRC) remain largely unknown. In this study, we evaluated the clinical significance and explored the underlying mechanism of DXS253E in CRC. Methods DXS253E expression in cancer tissues was investigated using the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The Kaplan-Meier plot was used to assess the prognosis of DXS253E. The cBioPortal, MethSurv, and Tumor Immune Estimation Resource (TIMER) databases were employed to analyze the mutation profile, methylation, and immune infiltration associated with DXS253E. The biological functions of DXS253E in CRC cells were determined by CCK-8 assay, plate cloning assay, Transwell assay, flow cytometry, lactate assay, western blot, and qRT-PCR. Results DXS253E was upregulated in CRC tissues and high DXS253E expression levels were correlated with poor survival in CRC patients. Our bioinformatics analyses showed that high DXS253E gene methylation levels were associated with the favorable prognosis of CRC patients. Furthermore, DXS253E levels were linked to the expression levels of several immunomodulatory genes and an abundance of immune cells. Mechanistically, the overexpression of DXS253E enhanced proliferation, migration, invasion, and the aerobic glycolysis of CRC cells through the AKT/mTOR pathway. Conclusions We demonstrated that DXS253E functions as a potential role in CRC progression and may serve as an indicator of outcomes and a therapeutic target for regulating the AKT/mTOR pathway in CRC.

Funder

Program for National Postdoctoral Researcher of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3