A novel prognostic signature based on smoking-associated genes for predicting prognosis and immune microenvironment in NSCLC smokers

Author:

Li Qixuan,Wang Tianyi,Tang Yijie,Zou Xian,Shen Zhongqi,Tang Zixin,Zhou Youlang,Shi Jiahai

Abstract

Abstract Background As a highly heterogeneous tumor, non-small cell lung cancer (NSCLC) is famous for its high incidence and mortality worldwide. Smoking can cause genetic changes, which leading to the occurrence and progress of NSCLC. Nevertheless, the function of smoking-related genes in NSCLC needs more research. Methods We downloaded transcriptome data and clinicopathological parameters from Gene Expression Omnibus (GEO) databases, and screened smoking-related genes. Lasso regression were applied to establish the 7-gene signature. The associations between the 7-gene signature and immune microenvironment analysis, survival analysis, drug sensitivity analysis and enriched molecular pathways were studied. Ultimately, cell function experiments were conducted to research the function of FCGBP in NSCLC. Results Through 7-gene signature, NSCLC samples were classified into high-risk group (HRG) and low-risk group (LRG). Significant difference in overall survival (OS) between HRG and LRG was found. Nomograms and ROC curves indicated that the 7-gene signature has a stable ability in predicting prognosis. Through the analysis of immune microenvironment, we found that LRG patients had better tumor immune activation. FCGBP showed the highest mutation frequency among the seven prognostic smoking related genes (LRRC31, HPGD, FCGBP, SPINK5, CYP24A1, S100P and FGG), and was notable down-regulated in NSCLC smokers compared with non-smoking NSCLC patients. The cell experiments confirmed that FCGBP knockdown promoting proliferation, migration, and invasion in NSCLC cells. Conclusion This smoking-related prognostic signature represents a promising tool for assessing prognosis and tumor microenvironment in smokers with NSCLC. The role of FCGBP in NSCLC was found by cell experiments, which can be served as diagnostic biomarker and immunotherapy target for NSCLC.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3