Radiotherapy-activated NBTXR3 nanoparticles modulate cancer cell immunogenicity and TCR repertoire

Author:

Darmon Audrey,Zhang Ping,Marill Julie,Mohamed Anesary Naeemunnisa,Da silva Jordan,Paris Sébastien

Abstract

Abstract Background Radiotherapy is a powerful and widely used technique for the treatment of solid tumors. Beyond its ability to destroy tumor cells, it has been demonstrated that radiotherapy can stimulate the anti-tumor immune response. Unfortunately, this effect is mainly restricted to the irradiated lesion, as tumor control outside the treated field (called the ‘abscopal effect’) is rarely obtained. In addition, many pro-tumoral factors prevent this anti-tumor immune response from being sustained and efficient. We previously reported that radiotherapy-activated NBTXR3 produced a significant CD8-dependent abscopal effect in immunocompetent mice bearing CT26.WT tumors, while radiotherapy failed to generate such a response. Methods To identify the mechanisms that may explain this response, we evaluated the capacity of radiotherapy-activated NBTXR3 to modulate the immunogenicity of tumor cells by analysis of immunogenic cell death biomarkers and immunopeptidome sequencing. In vivo, we analyzed treated tumors for CD4+, CD8 + and CD68 + cell infiltrates by immunohistochemistry and digital pathology and sequenced the T cell receptor (TCR) repertoire in both treated and untreated distant tumors. Results We showed that NBTXR3 activated by radiotherapy both increased immunogenic cell death biomarkers and modulated the immunopeptidome profile of CT26.WT cells. Immunohistochemistry analysis of treated tumors revealed a significant increase in CD4+, CD8 + and CD68 + cell infiltrates for NBTXR3 activated by radiotherapy group, compared to radiotherapy. We also measured significant modifications in TCR repertoire diversity in the radiotherapy-activated NBTXR3 group, both in treated and distant untreated tumors, compared to radiotherapy alone. Conclusions These results indicate that radiotherapy-activated NBTXR3 can act as an effective immunomodulator, modifying tumor cell immunogenicity and impacting the lymphocyte population. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3