A novel prognostic model based on single-cell RNA sequencing data for hepatocellular carcinoma

Author:

Lu Juan,Chen Yanfei,Zhang Xiaoqian,Guo Jing,Xu Kaijin,Li LanjuanORCID

Abstract

Abstract Background The tumour heterogeneous make-up of immune cell infiltrates is a key factor for the therapy response and prognosis of hepatocellular carcinoma (HCC). However, it is still a major challenge to comprehensively understand the tumour immune microenvironment (TIME) at the genetic and cellular levels. Methods HCC single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene Expression Omnibus (GEO) database, and gene expression data were retrieved from The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database. Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was performed to evaluate the abundance of immune infiltrating cells. We employed weighted gene coexpression network analysis (WGCNA) to construct a gene coexpression network. Univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses were further used to construct a risk model. Moreover, the expression levels of model genes were assessed by qPCR. Results We defined 25 cell clusters based on the scRNA-seq dataset (GSE149614), and the clusters were labelled as various cell types by marker genes. Then, we constructed a weighted coexpression network and identified a total of 6 modules, among which the brown module was most highly correlated with tumours. Moreover, we found that the brown module was most closely related to monocytes (cluster 21). Through univariate Cox and LASSO analyses, we constructed a 3-gene risk model (RiskScore = 0.257*Expression CSTB + 0.263* Expression TALDO1 + 0.313* Expression CLTA). This risk model showed excellent predictive efficacy for prognosis in the TCGA-LIHC and ICGC cohorts. Additionally, patients with high risk scores were found to be less likely to benefit from immunotherapy. Conclusions We developed a 3-gene signature (including CLTA, TALDO1 and CSTB) based on the heterogeneity of the TIME to predict the survival outcome and immunotherapy response.

Funder

National Nature Science Foundation of China

the Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3