Construction and validation of a ferroptosis-related long noncoding RNA signature in clear cell renal cell carcinoma

Author:

Zhu Zhenpeng,Zhang Cuijian,Qian Jinqin,Feng Ninghan,Zhu Weijie,Wang Yang,Gong Yanqing,Li Xuesong,Lin JianORCID,Zhou Liqun

Abstract

Abstract Background Clear cell renal cell carcinoma (ccRCC) is characterized by the accumulation of lipid-reactive oxygen species. Ferroptosis, due to the lipid peroxidation, has been reported to be strongly correlated with tumorigenesis and progression. However, the functions of the ferroptosis process in ccRCC remain unclear. Methods After sample cleaning, data integration, and batch effect removal, we used the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases to screen out the expression and prognostic value of ferroptosis-related lncRNAs and then performed the molecular subtyping using the K-means method. Then, the functional pathway enrichment and immune microenvironment infiltration between the different clusters were carried out. The results showed a significant difference in immune cell infiltration between the two clusters and the associated marker responded to individualized differences in treatment. Then, least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a prognostic signature based on 5 lncRNAs. This signature could accurately predicted patient prognosis and served as an independent clinical risk factor. We then combined significant clinical parameters in multivariate Cox regression and the prognostic signature to construct a clinical predictive nomogram, which provides appropriate guidance for predicting the overall survival of ccRCC patients. Results The prognostic differentially expressed ferroptosis-related LncRNAs (DEFRlncRNAs) were found, and 5 lncRNAs were finally used to establish the prognostic signature in the TCGA cohort, with subsequently validation in the internal and external cohorts. Moreover, we conducted the molecular subtyping and divided the patients in the TCGA cohort into two clusters showing differences in Hallmark pathways, immune infiltration, immune target expression, and drug therapies. Differences between clusters contributed to individualizing treatment. Furthermore, a nomogram was established to better predict the clinical outcomes of the ccRCC patients. Conclusions Our study conducted molecular subtyping and established a novel predictive signature based on the ferroptosis-related lncRNAs, which contributed to the prognostic prediction and individualizing treatment of ccRCC patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing

Wuxi “Taihu Talents Program” Medical and Health High-level Talents Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3