Knockdown of RSPH14 inhibits proliferation, migration, and invasion and promotes apoptosis of hepatocellular carcinoma via RelA

Author:

Yuan Dawei,Ma Rulan,Sun Tuanhe,Zhu Kun,Dang Chengxue,Ye Haixia,Li KangORCID

Abstract

Abstract Background High RSPH14 expression appears to be related to poor prognosis of hepatocellular carcinoma (HCC). This study aimed to investigate the possible roles of RSPH14 in the proliferation, apoptosis, and invasion of HCC cells. Methods The UALCAN database and Kaplan–Meier Plotter were used to evaluate the expression level and prognostic role of RSPH14 in HCC. Lentiviral vectors containing shRNA against RSPH14 were constructed to transfect the BEL-7404 and SMMC-7721 HCC cell lines. Cell proliferation was investigated by BrdU, MTT, and colony-formation assays. Apoptosis was detected using flow cytometry. Cell migration and invasion were evaluated using the scratch wound-healing and Transwell assays. Immunohistochemistry and western blot were used to determine the expression levels of the proteins. The function of RSPH14 in vivo was evaluated using a xenograft mouse model. Results The expression of RSPH14 was higher in HCC tumor tissues than in adjacent normal tissues and was closely related to unfavorable prognostic factors and poorer survival (all P < 0.05). Knockdown of RSPH14 inhibited the cell proliferation, migration, and invasion of HCC cells and promoted apoptosis (all P < 0.05). Knockdown of RSPH14 inhibited tumor growth in vivo (P < 0.05). RSPH14 knockdown led to decreased expression of RelA (NF-κBp65), CDH2, and AKT1, thereby affecting the functions of the HCC cells (all P < 0.05). RelA overexpression could abate the inhibitory effect of BEL-7404 cell proliferation caused by RSPH14 depletion. Conclusion Knockdown of RSPH14 could decrease cell proliferation, migration, and invasion and increase apoptosis of HCC cells by inhibiting RelA expression. RSPH14 could be a new treatment target for HCC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3