DNA methylation data-based molecular subtype classification and prediction in patients with gastric cancer

Author:

Lian Qixin,Wang Bo,Fan Lijun,Sun Junqiang,Wang Guilai,Zhang JidongORCID

Abstract

Abstract Background Genetic and epigenetic alterations have been indicated to be closely correlated with the carcinogenesis, DNA methylation is one of most frequently occurring molecular behavior that take place early during this complicated process in gastric cancer (GC). Methods In this study, 398 samples were collected from the cancer genome atlas (TCGA) database and were analyzed, so as to mine the specific DNA methylation sites that affected the prognosis for GC patients. Moreover, the 23,588 selected CpGs that were markedly correlated with patient prognosis were used for consistent clustering of the samples into 6 subgroups, and samples in each subgroup varied in terms of M, Stage, Grade, and Age. In addition, the levels of methylation sites in each subgroup were calculated, and 347 methylation sites (corresponding to 271 genes) were screened as the intrasubgroup specific methylation sites. Meanwhile, genes in the corresponding promoter regions that the above specific methylation sites were located were performed signaling pathway enrichment analysis. Results The specific genes were enriched to the biological pathways that were reported to be closely correlated with GC; moreover, the subsequent transcription factor enrichment analysis discovered that, these genes were mainly enriched into the cell response to transcription factor B, regulation of MAPK signaling pathways, and regulation of cell proliferation and metastasis. Eventually, the prognosis prediction model for GC patients was constructed using the Random Forest Classifier model, and the training set and test set data were carried out independent verification and test. Conclusions Such specific classification based on specific DNA methylation sites can well reflect the heterogeneity of GC tissues, which contributes to developing the individualized treatment and accurately predicting patient prognosis.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3