Author:
Dey Kaushik Kumar,Sarkar Siddik,Pal Ipsita,Das Subhasis,Dey Goutam,Bharti Rashmi,Banik Payel,Roy Joygopal,Maity Sukumar,kulavi Indranil,Mandal Mahitosh
Abstract
Abstract
Background
Squamous cell carcinoma of the oral cavity (SCCOC) is the dominant origin of cancer associated mortality. Previous findings by our study reported that acquisition of anoikis resistance has a significant role in tumor progression of oral cavity. Several genes were over-expressed in anoikis-resistant cells under detached conditions which we confirmed earlier by microarray. Normal oral squamous epithelia grow adherent to a basement membrane, and when detached from the extracellular matrix, undergoes programmed cell death. The acquisition of anoikis-resistance is crucial phenomena in oral tumor advancement. In the current study, we have identified S100A7 expression as contributing factor for anoikis resistance and tumorigenicity in human oral cancer cells. Further, we have explored that elevated S100A7 expression in anoikis-sensitive oral keratinocytes and cancer cells reshape them more resistant to anoikis and apoptosis inducers via activation of cellular intrinsic and extrinsic avenue.
Methods
A subset of human cancer cell lines TU167, JMAR, JMARC39, JMARC42 and MDA-MB-468 were utilized for the generation of resistant stable cell lines. Further, immunohistochemistry, western blot and immunoprecipitation, assays of apoptosis, soft agar assay, orthotopic animal model and signaling elucidation were performed to establish our hypothesis.
Results
S100A7 gene is found to be responsible for anoikis resistance and tumorigenicity in human oral cancer cells. We have observed up-regulation of S100A7 in anoikis resistant cell lines, orthotropic model and patients samples with head and neck cancer. It is also noticed that secretion of S100A7 protein in conditioned medium by anoikis resistant head & neck cancer cell and in saliva of head and neck cancer patients. Up-regulation of S100A7 expression has triggered enhanced tumorigenicity and anchorage-independent growth of cancer cells through Akt phosphorylation leading to development of aniokis resistance in head and neck cancer cells.
Conclusions
These data have led us to conclude that S100A7 is the major contributing factor in mediating anoikis-resistance of oral cancer cells and local tumor progression, and S100A7 might be useful as diagnostic marker for early detection of primary and recurrent squamous cell cancer.
Funder
Department of Science and Technology India
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference41 articles.
1. Haake AR, Polakowska RR (1993) Cell death by apoptosis in epidermal biology. J Invest Dermatol 101(2):107–112
2. Birchall M, Winterford C, Tripconi L, Gobe G, Harmon B (1996) Apoptosis and mitosis in oral and oropharyngeal epithelia: evidence for a topographical switch in premalignant lesions. Cell Prolif 29(8):447–456
3. Itakura M, Mori S, Park NH, Bonavida B (2000) Both HPV and carcinogen contribute to the development of resistance to apoptosis during oral carcinogenesis. Int J Oncol 16(3):591–597
4. Kantak SS, Kramer RH (1998) E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273(27):16953–16961
5. Taddei ML, Giannoni E, Fiaschi T, Chiarugi P (2012) Anoikis: an emerging hallmark in health and diseases. J Pathol 226(2):380–393. doi:10.1002/path.3000
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献