Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies

Author:

Shirasu NaotoORCID,Shibaguchi Hirotomo,Yamada Hiromi,Kuroki Masahide,Yasunaga Shin’ichiro

Abstract

Abstract Background Photoimmunotherapy (PIT) employing antibody-photosensitizer conjugates is a promising treatment for cancer. However, the fixed antigen specificity severely limits the efficacy and the applicability. Here we describe a universal strategy for PIT of cancer by using a near-infrared (NIR) photosensitizer IRDye700DX-conjugated NeutrAvidin, designated as AvIR, together with various biotinylated antibodies (BioAbs) for cellular targeting. Methods Cytotoxicity of AvIR-mediated PIT was evaluated by fluorescence imaging and cell viability assay. Phototoxic effect on tumorigenicity was assessed by tumorsphere-formation assay and Matrigel invasion assay. Cancer stem cell-like side-population (SP) cells were identified by flow cytometry. Results CHO cells stably expressing carcinoembryonic antigen or EpCAM were pre-labeled with each BioAb for the corresponding antigen, followed by AvIR administration. NIR light irradiation specifically killed the targeted cells, but not off-targets, demonstrating that the AvIR-mediated PIT does work as expected. CSC-like subpopulation of MCF-7 cells (CD24low/CD44high) and SP of HuH-7 cells (CD133+/EpCAM+) were effectively targeted and photokilled by AvIR-PIT with anti-CD44 BioAb or anti-CD133/anti-EpCAM BioAbs, respectively. As results, the neoplastic features of the cell lines were sufficiently suppressed. Cancer-associated fibroblast (CAF)-targeted AvIR-PIT by using anti-fibroblast activation protein BioAb showed an abolishment of CAF-enhanced clonogenicity of MCF-7 cells. Conclusions Collectively, our results demonstrate that AvIR-mediated PIT can greatly broaden the applicable range of target specificity, with feasibility of efficacious and integrative control of CSC and its microenvironment.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3