Identification of an immune gene signature for predicting the prognosis of patients with uterine corpus endometrial carcinoma

Author:

Zhou CankunORCID,Li Chaomei,Yan Fangli,Zheng Yuhua

Abstract

Abstract Background Uterine corpus endometrial carcinoma (UCEC) is a frequent gynecological malignancy with a poor prognosis particularly at an advanced stage. Herein, this study aims to construct prognostic markers of UCEC based on immune-related genes to predict the prognosis of UCEC. Methods We analyzed expression data of 575 UCEC patients from The Cancer Genome Atlas database and immune genes from the ImmPort database, which were used for generation and validation of the signature. We constructed a transcription factor regulatory network based on Cistrome databases, and also performed functional enrichment and pathway analyses for the differentially expressed immune genes. Moreover, the prognostic value of 410 immune genes was determined using the Cox regression analysis. We then constructed and verified a prognostic signature. Finally, we performed immune infiltration analysis using TIMER-generating immune cell content. Results The immune cell microenvironment as well as the PI3K-Akt, and MARK signaling pathways were involved in UCEC development. The established prognostic signature revealed a ten-gene prognostic signature, comprising of PDIA3, LTA, PSMC4, TNF, SBDS, HDGF, HTR3E, NR3C1, PGR, and CBLC. This signature showed a strong prognostic ability in both the training and testing sets and thus can be used as an independent tool to predict the prognosis of UCEC. In addition, levels of B cells and neutrophils were significantly correlated with the patient’s risk score, while the expression of ten genes was associated with immune cell infiltrates. Conclusions In summary, the ten-gene prognostic signature may guide the selection of the immunotherapy for UCEC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3