LINC00511 accelerated the process of gastric cancer by targeting miR-625-5p/NFIX axis

Author:

Chen Zhaosheng,Wu HongleiORCID,Zhang Zhen,Li Guangchun,Liu Bin

Abstract

Abstract Background Gastric cancer (GC) is a common-sighted cancer which is hard to cure over the world. Substantial researches revealed that long non-coding RNAs (lncRNAs) were fundamental regulators in the process of cancers. Nevertheless, the biological function of LINC00511 and how LINC00511 was involved in the regulatory system in GC remained unclear. Methods RIP assays and luciferase reporter assays were performed to illustrate combination between LINC00511 and miR-625-5p. Loss-of-function assays were applied for identifying LINC00511 function in GC. Results In our study, LINC00511 was discovered significantly high in expression in GC tissues and cell lines. Moreover, LINC00511 showed a strong expression in I/II and III/IV stage. Knockdown of LINC00511 could inhibit the cell proliferation while enhanced cell apoptosis rate in GC. We used nuclear–cytoplasmic fractionation to judge the subcellular localization of LINC00511. Furthermore, miR-625-5p was found to have binding sites for LINC00511 and negatively regulated by LINC00511. Overexpression of miR-625-5p repressed the course of GC. And knockdown of miR-625-5p could recover the effects of LINC00511 silence. Besides, NFIX was discovered as a downstream target of miR-625-5p and overexpression of NFIX could offset the influence of LINC00511 silence. The results of vivo studies manifested that down-regulation of LINC00511 could reduce the Ki67 expression and NFIX while lifted the expression of miR-625-5p. Conclusion Overall, the results from our study demonstrated that LINC00511 could function as a tumor promoter by targeting miR-625-5p NFIX axis, suggesting LINC00511 could be considered as a target for GC treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3