Characterization and comparison of genomic profiles between primary cancer cell lines and parent atypical meningioma tumors

Author:

Kim Eunhye,Kim Mirae,So Kyungha,Park Young Seok,Woo Chang Gok,Hyun Sang-HwanORCID

Abstract

Abstract Background Meningiomas are the second most common primary tumors of the central nervous system. However, there is a paucity of data on meningioma biology due to the lack of suitable preclinical in vitro and in vivo models. In this study, we report the establishment and characterization of patient-derived, spontaneously immortalized cancer cell lines derived from World Health Organization (WHO) grade I and atypical WHO grade II meningiomas. Methods We evaluated high-resolution 3T MRI neuroimaging findings in meningioma patients which were followed by histological analysis. RT-qPCR and immunostaining analyses were performed to determine the expression levels of meningioma-related factors. Additionally, flow cytometry and sorting assays were conducted to investigate and isolate the CD133 and CD44 positive cells from primary atypical meningioma cells. Further, we compared the gene expression profiles of meningiomas and cell lines derived from them by performing whole-exome sequencing of the blood and tumor samples from the patients, and the primary cancer cell lines established from the meningioma tumor. Results Our results were consistent with earlier studies that reported mutations in NF2, SMO, and AKT1 genes in atypical meningiomas, and we also observed mutations in MYBL2, a gene that was recently discovered. Significantly, the genomic signature was consistent between the atypical meningioma cancer cell lines and the tumor and blood samples from the patient. Conclusion Our results lead us to conclude that established meningioma cell lines with a genomic signature identical to tumors might be a valuable tool for understanding meningioma tumor biology, and for screening therapeutic agents to treat recurrent meningiomas.

Funder

National Research Foundation (NRF) of Korea Grant

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Ministry of Education, Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3