Author:
Yoda Yoshiko,Otani Naruhito,Hasunuma Hideki,Kanegae Hiroshi,Shima Masayuki
Abstract
Abstract
Background
The measurement of fractional concentration of nitric oxide in exhaled air (FeNO) is valuable for the assessment of airway inflammation. Offline measurement of FeNO has been used in some epidemiologic studies. However, the time course of the changes in FeNO after collection has not been fully clarified. In this study, the effects of storage conditions on the stability of FeNO measurement in exhaled air after collection for epidemiologic research were examined.
Methods
Exhaled air samples were collected from 48 healthy adults (mean age 43.4 ± 12.1 years) in Mylar bags. FeNO levels in the bags were measured immediately after collection. The bags were then stored at 4°C or room temperature to measure FeNO levels repeatedly for up to 168 hours.
Results
In the bags stored at room temperature after collection, FeNO levels were stable for 9 hours, but increased starting at 24 hours. FeNO levels remained stable for a long time at 4°C, and they were 99.7% ± 7.7% and 101.3% ± 15.0% relative to the baseline values at 24 and 96 hours, respectively. When the samples were stored at 4°C, FeNO levels gradually decreased with time among the subjects with FeNO ≥ 51 ppb immediately after collection, although there were almost no changes among the other subjects. FeNO levels among current smokers increased even at 4°C, although the values among ex-smokers decreased gradually, and those among nonsmokers remained stable. The rate of increase was significantly higher among current smokers than among nonsmokers and ex-smokers from 9 hours after collection onwards.
Conclusions
Storage at 4°C could prolong the stability of FeNO levels after collection. This result suggests that valid measurements can be performed within several days if the samples are stored at 4°C. However, the time course of the changes in FeNO levels differed in relation to initial FeNO values and cigarette smoking.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference38 articles.
1. Shelhamer JH, Levine SJ, Wu T, Jacoby DB, Kaliner MA, Rennard SI: NIH conference. Airway inflammation. Ann Intern Med. 1995, 123: 288-304.
2. Foresi A, Bertorelli G, Pesci A, Chetta A, Olivieri D: Inflammatory markers in bronchoalveolar lavage and in bronchial biopsy in asthma during remission. Chest. 1990, 98: 528-535. 10.1378/chest.98.3.528.
3. American Thoracic S, European Respiratory S: ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005, 171: 912-930.
4. Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave FE, Dolovich J: Use of induced sputum cell counts to investigate airway inflammation in asthma. Thorax. 1992, 47: 25-29. 10.1136/thx.47.1.25.
5. Gibson PG, Henry RL, Thomas P: Noninvasive assessment of airway inflammation in children: induced sputum, exhaled nitric oxide, and breath condensate. Eur Respir J. 2000, 16: 1008-1015.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献