Author:
Moussavi-Najarkola Seyyed-Ali,Khavanin Ali,Mirzaei Ramazan,Salehnia Mojdeh,Akbari Mehdi
Abstract
Abstract
Background
Whole body vibration (WBV) is a potentially harmful consequence resulting from the dissipation of energy by industrial machineries. The result of WBV exposure on the auditory system remains unknown. The objective of the present research was to evaluate the influence of WBV on cochlear function, in particular outer hair cell function. It is hypothesized that WBV impairs cochlear function resulting in decreased Distortion Product Otoacoustic Emission (DPOAE) levels (Ldp) in rabbits subjected to WBV.
Methods
Twelve rabbits were equally divided into vibration and control groups. Animals in vibration group were exposed to 1.0 ms-2 r.m.s vertical WBV at 4–8 Hz for 8 h/day during 5 consecutive days. Outer hair cell function was assessed by comparing repeated-measurements of DPOAE levels (Ldp) across a range of f2 frequencies in rabbits both exposed and unexposed to WBV. DPOAE level shifts (LSdp) were compared across ears, frequencies, groups, and times.
Results
No differences were seen over time in DPOAE levels in the non-exposed rabbits (p = 0.082). Post-exposure Ldp in rabbits exposed to WBV were significantly increased at all test frequencies in both ears compared to baseline measures (p = 0.021). The greatest increase in Ldp following exposure was seen at 5888.5 Hz (mean shift = 13.25 dB). Post-exposure Ldp in rabbits exposed to WBV were not significantly different between the right and left ears (p = 0.083).
Conclusion
WBV impairs cochlear function resulting in increased DPOAE responses in rabbits exposed to WBV. DPOAE level shifts occurred over a wide range of frequencies following prolonged WBV in rabbits.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health,Safety Research,Toxicology
Reference40 articles.
1. South T: Managing noise and vibration at work: A practical guide to assessment, measurement and control. 1st edition. Oxford: Elsevier Butterworth-Heinemann; 2004:149–150.
2. Seidel H, Harazin B, Pavlas K, Sroka C, Richter J, Blüthner R, Erdmann U, Grzesik J, Hinz B, Rothe R: Isolated and combined effects of prolonged exposures to noise and whole body vibration on hearing, vision and strain. Int Arch Occup Environ Health 1988, 61: 95–106. 10.1007/BF00381613
3. Pyykko I, Pekkarinen J, Stark J: Sensory-neural hearing loss during combined noise and vibration exposure: An analysis of risk factors. Arch. Occup. Environ. Health 1987, 38: 439–454.
4. Starck J, Pekkarinen J, Pyykko I: Impulse noise and hand-arm vibration in relation to sensory neural hearing loss. Scand J Work Environ Heal 1988, 14: 265–271. 10.5271/sjweh.1922
5. Jauhiainen T, Kohonen A, Tarkanen J, Kaimio M: The effect of whole body vibration on the cochlea. Laryngoscope 1969, 79: 1950–1955. 10.1288/00005537-196911000-00007
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献