Author:
Mate Suzanne E.,Brown Kristy J.,Hoffman Eric P.
Abstract
Abstract
Background
During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins.
Results
Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome.
Conclusions
Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Orthopedics and Sports Medicine
Reference77 articles.
1. Bennett MVL: Comparative physiology: electric organs. Annu Rev Physiol 1970, 32: 471-528. 10.1146/annurev.ph.32.030170.002351
2. Connolly JA, St John PA, Fischbach GD: Extracts of electric lobe and electric organ from Torpedo californica increase the total number as well as the number of aggregates of chick myotube acetylcholine receptors. J Neurosci 1982, 2: 1207-1213.
3. Schwartz IR, Pappas GD, Bennett MVL: The fine structure of electrocytes in weakly electric teleosts. J Neurocytol 1975, 4: 87-114. 10.1007/BF01099098
4. Lowe CG, Bray RN, Nelson DR: Feeding and associated electrical behavior of the Pacific electric ray Torpedo californica in the field. Mar Biol 1994, 120: 161-169.
5. Bennett MVL: Electric organs. In Fish Physiology Vol V: Sensory Systems and Electric Organs. Edited by: Hoar WS, Randall DJ. New York, USA: Academic Press; 1971:347-374.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献