Author:
Heydemann Ahlke,Swaggart Kayleigh A,Kim Gene H,Holley-Cuthrell Jenan,Hadhazy Michele,McNally Elizabeth M
Abstract
Abstract
Background
Mice from the MRL or “superhealing” strain have enhanced repair after acute injury to the skin, cornea, and heart. We now tested an admixture of the MRL genome and found that it altered the course of muscle pathology and cardiac function in a chronic disease model of skeletal and cardiac muscle. Mice lacking γ-sarcoglycan (Sgcg), a dystrophin-associated protein, develop muscular dystrophy and cardiomyopathy similar to their human counterparts with limb girdle muscular dystrophy. With disruption of the dystrophin complex, the muscle plasma membrane becomes leaky and muscles develop increased fibrosis.
Methods
MRL/MpJ mice were bred with Sgcg mice, and cardiac function was measured. Muscles were assessed for fibrosis and membrane leak using measurements of hydroxyproline and Evans blue dye. Quantitative trait locus mapping was conducted using single nucleotide polymorphisms distinct between the two parental strains.
Results
Introduction of the MRL genome reduced fibrosis but did not alter membrane leak in skeletal muscle of the Sgcg model. The MRL genome was also associated with improved cardiac function with reversal of depressed fractional shortening and the left ventricular ejection fraction. We conducted a genome-wide analysis of genetic modifiers and found that a region on chromosome 2 was associated with cardiac, diaphragm muscle and abdominal muscle fibrosis.
Conclusions
These data are consistent with a model where the MRL genome acts in a dominant manner to suppress fibrosis in this chronic disease setting of heart and muscle disease.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Orthopedics and Sports Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献