Method for Activity Sleep Harmonization (MASH): a novel method for harmonizing data from two wearable devices to estimate 24-h sleep–wake cycles

Author:

Dooley Erin E.,Winkles J. F.,Colvin Alicia,Kline Christopher E.,Badon Sylvia E.,Diaz Keith M.,Karvonen-Gutierrez Carrie A.,Kravitz Howard M.,Sternfeld Barbara,Thomas S. Justin,Hall Martica H.,Pettee Gabriel Kelley

Abstract

Abstract Background Daily 24-h sleep–wake cycles have important implications for health, however researcher preferences in choice and location of wearable devices for behavior measurement can make 24-h cycles difficult to estimate. Further, missing data due to device malfunction, improper initialization, and/or the participant forgetting to wear one or both devices can complicate construction of daily behavioral compositions. The Method for Activity Sleep Harmonization (MASH) is a process that harmonizes data from two different devices using data from women who concurrently wore hip (waking) and wrist (sleep) devices for ≥ 4 days. Methods MASH was developed using data from 1285 older community-dwelling women (ages: 60–72 years) who concurrently wore a hip-worn ActiGraph GT3X + accelerometer (waking activity) and a wrist-worn Actiwatch 2 device (sleep) for ≥ 4 days (N = 10,123 days) at the same time. MASH is a two-tiered process using (1) scored sleep data (from Actiwatch) or (2) one-dimensional convolutional neural networks (1D CNN) to create predicted wake intervals, reconcile sleep and activity data disagreement, and create day-level night-day-night pairings. MASH chooses between two different 1D CNN models based on data availability (ActiGraph + Actiwatch or ActiGraph-only). MASH was evaluated using Receiver Operating Characteristic (ROC) and Precision-Recall curves and sleep–wake intervals are compared before (pre-harmonization) and after MASH application. Results MASH 1D CNNs had excellent performance (ActiGraph + Actiwatch ROC-AUC = 0.991 and ActiGraph-only ROC-AUC = 0.983). After exclusions (partial wear [n = 1285], missing sleep data proceeding activity data [n = 269], and < 60 min sleep [n = 9]), 8560 days were used to show the utility of MASH. Of the 8560 days, 46.0% had ≥ 1-min disagreement between the devices or used the 1D CNN for sleep estimates. The MASH waking intervals were corrected (median minutes [IQR]: − 27.0 [− 115.0, 8.0]) relative to their pre-harmonization estimates. Most correction (− 18.0 [− 93.0, 2.0] minutes) was due to reducing sedentary behavior. The other waking behaviors were reduced a median (IQR) of − 1.0 (− 4.0, 1.0) minutes. Conclusions Implementing MASH to harmonize concurrently worn hip and wrist devices can minimizes data loss and correct for disagreement between devices, ultimately improving accuracy of 24-h compositions necessary for time-use epidemiology.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3