Durable effects of deep brain ultrasonic neuromodulation on major depression: a case report

Author:

Riis Thomas S.,Feldman Daniel A.,Vonesh Lily C.,Brown Jefferson R.,Solzbacher Daniela,Kubanek JanORCID,Mickey Brian J.

Abstract

Abstract Background Severe forms of depression have been linked to hyperactivity of the subcallosal cingulate cortex. The ability to stimulate the subcallosal cingulate cortex or associated circuits noninvasively and directly would maximize the number of patients who could receive treatment. To this end, we have developed an ultrasound-based device for effective noninvasive modulation of deep brain circuits. Here we describe an application of this tool to an individual with treatment-resistant depression. Case presentation A 30-year-old Caucasian woman with severe treatment-resistant non-psychotic depression was recruited into a clinical study approved by the Institutional Review Board of the University of Utah. The patient had a history of electroconvulsive therapy with full remission but without sustained benefit. Magnetic resonance imaging was used to coregister the ultrasound device to the subject’s brain anatomy and to evaluate neural responses to stimulation. Brief, 30-millisecond pulses of low-intensity ultrasound delivered into the subcallosal cingulate cortex target every 4 seconds caused a robust decrease in functional magnetic resonance imaging blood-oxygen-level-dependent activity within the target. Following repeated stimulation of three anterior cingulate targets, the patient’s depressive symptoms resolved within 24 hours of the stimulation. The patient remained in remission for at least 44 days afterwards. Conclusions This case illustrates the potential for ultrasonic neuromodulation to precisely engage deep neural circuits and to trigger a durable therapeutic reset of those circuits. Trial registration ClinicalTrials.gov, NCT05301036. Registered 29 March 2022, https://clinicaltrials.gov/ct2/show/NCT05301036

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3