Whole lung lavage decreases physiological dead space in patients with pulmonary alveolar proteinosis: two case reports

Author:

Fujihara TatsuyaORCID,Shono AtsukoORCID,Katayama Nozomi,Nikai Tetsuro,Shiratsuki Yohei,Amano Yoshihiro,Saito Yoji

Abstract

Abstract Background Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by progressive accumulation of the alveolar surfactant. Whole lung lavage (WLL) using a high volume of warmed saline remains the standard therapy. However, no established bedside monitoring tool can evaluate the physiological effect of WLL in the perioperative period. Indirect calorimetry, which is generally used to measure resting energy expenditure, can detect carbon dioxide (CO2) production and mixed-expired partial pressure of CO2 breath by breath. In this physiological study, we calculated CO2 elimination per breath (VTCO2,br) and Enghoff’s dead space using indirect calorimetry and measured the extravascular lung water index to reveal the effect of WLL. Case presentation We measured VTCO2,br, Enghoff’s dead space, and the extravascular lung water and cardiac indices before and after WLL to assess the reduction in shunt by washing out the surfactant. A total of four WLLs were performed in two PAP patients. The first case involved an Asian 62-year-old man who presented with a 3-month history of dyspnea on exertion. The second case involved an Asian 48-year-old woman with no symptoms. VTCO2,br increased, and the Enghoff’s dead space decreased at 12 h following WLL. An increase in the extravascular lung water was detected immediately following WLL, leading to a transient increase in Enghoff’s dead space. Conclusion WLL can increase efficient alveolar ventilation by washing out the accumulated surfactant. However, the lavage fluid may be absorbed into the lung tissues immediately after WLL and result in an increase in the extravascular lung water.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference12 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3