Author:
Wu Ya,Li Xueya,Tan Fang,Zhou Xianrong,Mu Jianfei,Zhao Xin
Abstract
Abstract
Background
Obesity is an epidemic disease in the world, the treatment and prevention of obesity methods have gained great attention. Lactobacillus is the main member of probiotics, and the physiological activity of it is specific to different strains. This study systematically explored the anti-obesity effect and possible mechanism of Lactobacillus fermentum CQPC07 (LF-CQPC07), which was isolated from pickled vegetables.
Results
LF-CQPC07 effectively controlled the weight gain of mice caused by a high-fat diet. The results of pathological sections indicated that LF-CQPC07 alleviated hepatocyte damage and fat accumulation in adipocytes. The detection of biochemical indictors revealed that LF-CQPC07 decreased the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG), and increased the level of high-density lipoprotein cholesterol (HDL-C). Additionally, LF-CQPC07 caused the decrease in the amounts of inflammatory cytokines interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and interferon-γ (IFN-γ), and the increase in the amounts of the anti-inflammatory cytokines IL-10 and IL-4. LF-CQPC07 also decreased the amounts of alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). Confirmed by qPCR, LF-CQPC07 enhanced the mRNA expression of catalase (CAT), gamma glutamylcysteine synthetase 1 (GSH1), copper/zinc superoxide dismutase (SOD1), manganese superoxide dismutase (SOD2), and glutathione peroxidase (GSH-Px). It also increased the mRNA expression levels of carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor alpha (PPAR-α), lipoprotein lipase (LPL), and cholesterol 7 alpha hydroxylase (CYP7A1), and decreased that of PPAR-γ and CCAAT/enhancer binding protein alpha (C/EBP-α) in the liver of mice.
Conclusion
This research confirmed that LF-CQPC07 is capable of ameliorating obesity, improving hyperlipemia, and alleviating chronic low-grade inflammation and liver injury accompanied with obesity. Its mechanism may be the regulation of antioxidant capacity and lipid metabolism. Therefore, LF-CQPC07 has enormous potential to serve as a potential probiotic for the prevention or treatment of obesity.
Funder
Children's Research Institute of National Center for Schooling Development Programme and Chongqing University of Education
Science and Technology Research Program of Chongqing Municipal Education Commission
Research Project of Chongqing University of Education
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Clinical Biochemistry
Reference64 articles.
1. Poutahidis T, Kleinewietfeld M, Smillie C, Levkovich T, Perrotta A, Bhela S, Varian BJ, Ibrahim YM, Lakritz JR, Kearney SM, Chatzigiagkos A, Hafler DA, Alm EJ, Erdman SE. Microbial reprogramming inhibits Western diet-associated obesity. PLoS One. 2013;8:e68596.
2. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17:4–12.
3. Khaodhiar L, Cummings S, Apovian CM. Treating diabetes and prediabetes by focusing on obesity management. Curr Diab Rep. 2009;9:348–54.
4. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation. 2016;133:187–225.
5. Younossi ZM, Koenig AB, Abdelatif D. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.