NLRP3 inflammasome inhibitor MCC950 attenuates primary dysmenorrhea in mice via the NF-κB/COX-2/PG pathway

Author:

Tang BiaoORCID,Liu Dan,Chen Lingyu,Liu Yu

Abstract

Abstract Background Primary dysmenorrhea (PD) constitutes a common gynecological disease among young women. The NLRP3 inflammasome may be activated and expressed in PD, but the mechanistic link between NLRP3 inflammasome activation and PD is still unclear. Methods To investigate the potential role of NLRP3 inflammasome activation in the pathogenesis of PD, 30 female Kunming mice without pregnancy were used for experiments. The PD mouse model was constructed by 11 days of successive co-treatment with estradiol and oxytocin. MCC950, a potent and specific small-molecule inhibitor of the NLRP3 inflammasome, was used to treat PD mice. The disease level was assessed by the writhing response and hot water tail-flick test. The levels of prostaglandin E2 (PGE2) and prostaglandin F2 alpha (PGF) in the uterine tissues of mice were detected by ELISA. The expression levels of protein and cytokines, including NLRP3, cysteine aspartic acid-specific protease 1 (caspase-1), interleukin (IL)-1β, IL-18, nuclear factor kappa B (NF-κB) p65, phospho-NF-κB p65, and cyclooxygenase-2 (COX-2) were revealed by western blot analysis. Results MCC950 greatly ameliorated the writhing response induced by the combination of oxytocin and estradiol, with an increasing length of tail-flick latency. MCC950 also significantly decreased the levels of PGF and PGE2, and the expressions of NLRP3, caspase-1, IL-1β, IL-18, phospho-NF-κB p65, NF-κB p65, and COX-2 in the uterus. Conclusions MCC950 markedly alleviated the pain and pathological damage in PD mice by inhibiting NLRP3 activation. The underlying mechanism may be related to hypoactive uterine inflammation via suppression of NLRP3 activation and the NF-κB/COX-2/PG pathway in uteruses of PD mice.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3