Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury

Author:

Walsh Sarah A.ORCID,Davis Thomas A.ORCID

Abstract

Abstract Background Assessment of immune status in critically ill patients is often based on serial tracking of systemic cytokine levels and clinical laboratory values. Exosomes are extracellular vesicles that can be secreted and internalized by cells to transport important cellular cargo in the regulation of numerous physiological and pathological processes. Here, we characterize the early compartmentalization profile of key proinflammatory mediators in serum exosomes in the steady state and following trauma. Adult male Sprague-Dawley rats (91 including naïve) were divided into one of four traumatic injury model groups incorporating whole-body blast, fracture, soft-tissue crush injury, tourniquet-induced ischemia, and limb amputation. Serum was collected at 1, 3, 6, and 24 h, and 3- and 7-day post-injury. Electrochemiluminescence-based immunoassays for 9 key proinflammatory mediators in whole serum, isolated serum exosomes, and exosome depleted serum were analyzed and compared between naïve and injured rats. Serum clinical chemistry analysis was performed to determine pathological changes. Results In naïve animals, substantial amounts of IL-1β, IL-10, and TNF-α were encapsulated, IL-6 was completely encapsulated, and CXCL1 freely circulating. One hour after blast injury alone, levels of exosome encapsulated IFN-γ, IL-10, IL-6, IL-13, IL-4, and TNF-α increased, whereas freely circulating and membrane-associated levels remained undetectable or low. Rats with the most severe polytraumatic injuries with end organ complications had the earliest rise and most pronounced concentration of IL-1β, IL-10, TNF-α, and IL-6 across all serum compartments. Moreover, CXCL1 levels increased in relation to injury severity, but remained almost entirely freely circulating at all timepoints. Conclusion These findings highlight that conventional ELISA-based assessments, which detect only free circulating and exosome membrane-bound mediators, underestimate the full immunoinflammatory response to trauma. Inclusion of exosome encapsulated mediators may be a better, more accurate and clinically useful early strategy to identify, diagnose, and monitor patients at highest risk for post-traumatic inflammation-associated complications.

Funder

Congressionally Directed Medical Research Programs

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

Reference58 articles.

1. Findings from the Global Burden of Disease Study 2017. Seattle, WA: Institute for Health Metrics and Evaluation 2018.

2. Chukwu-Lobelu R, Appukuttan A, Edwards DS, Patel HDL. Burn injuries from the London suicide bombings: a new classification of blast-related thermal injuries. Ann Burns Fire Disasters. 2017;30(4):256–60.

3. Edwards DS, Clasper JC, Patel HD. Heterotopic ossification in victims of the London 7/7 bombings. J R Army Med Corps. 2015;161(4):345–7.

4. Edwards MJ, Lustik M, Eichelberger MR, Elster E, Azarow K, Coppola C. Blast injury in children: an analysis from Afghanistan and Iraq, 2002-2010. J Trauma Acute Care Surg. 2012;73(5):1278–83.

5. Hasan O, Sheikh S, Fatima A, Abbas A, Zahid N, Baloch N. Motor-vehicle crash patient injury patterns from a level one trauma center in a Metropolitan City: a cross-sectional study. Cureus. 2019;11(2):e4073.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3