Author:
Yu Yue,Yang Ailin,He Xin,Wu Bo,Wu Yanjun,Li Yunxiao,Nie Shan,Xu Bo,Wang Haoyan,Yu Ganggang
Abstract
Abstract
Background
Soluble Epoxide Hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids and critically affects airway inflammation in chronic obstructive pulmonary disease (COPD). Considering the excessive endoplasmic reticulum stress is associated with the earlier onset of COPD. The role of sEH and endoplasmic reticulum stress in the pathogenesis of COPD remains unknown.
Method
16 weeks of cigarette-exposed mice were used to detect the relationship between sEH and endoplasmic reticulum stress in COPD. Human epithelial cells were used in vitro to determine the regulation mechanism of sEH in endoplasmic reticulum stress induced by cigarette smoke.
Results
sEH deficiency helps reduce emphysema formation after smoke exposure by alleviating endoplasmic reticulum stress response. sEH deficiency effectively reverses the upregulation of phosphorylation IRE1α and JNK and the nuclear expression of AP-1, alleviating the secretion of inflammatory factors induced by cigarette smoke extract. Furthermore, the treatment with endoplasmic reticulum stress and IRE1α inhibitor downregulated cigarette smoke extract-induced sEH expression and the secretion of inflammatory factors.
Conclusion
sEH probably alleviates airway inflammatory response and endoplasmic reticulum stress via the IRE1α/JNK/AP-1 pathway, which might attenuate lung injury caused by long-term smoking and provide a new pharmacological target for preventing and treating COPD.
Funder
National Natural Science Foundation of China
Key Clinical Specialty Construction Program of Beijing
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Clinical Biochemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献