Chronic intermittent hypobaric hypoxia improves markers of iron metabolism in a model of dietary-induced obesity

Author:

Cui Fang,Guo Jing,Hu Hao-Fei,Zhang Yi,Shi Min

Abstract

Abstract Background Obesity, a risk factor for many chronic diseases, is a potential independent risk factor for iron deficiency. Evidence has shown that chronic intermittent hypobaric hypoxia (CIHH) has protective or improved effects on cardiovascular, nervous, metabolic and immune systems. We hypothesized that CIHH may ameliorate the abnormal iron metabolism in obesity. This study was aimed to investigate the effect and the underlying mechanisms of CIHH on iron metabolism in high-fat-high-fructose-induced obese rats. Methods Six to seven weeks old male Sprague-Dawley rats were fed with different diet for 16 weeks, and according to body weight divided into four groups: control (CON), CIHH (28-day, 6-h daily hypobaric hypoxia treatment simulating an altitude of 5000 m), dietary-induced obesity (DIO; induced by high fat diet and 10% fructose water feeding), and DIO + CIHH groups. The body weight, systolic arterial pressure (SAP), Lee index, fat coefficient, blood lipids, blood routine, iron metabolism parameters, interleukin6 (IL-6) and erythropoietin (Epo) were measured. The morphological changes of the liver, kidney and spleen were examined. Additionally, hepcidin mRNA expression in liver was analyzed. Results The DIO rats displayed obesity, increased SAP, lipids metabolism disorders, damaged morphology of liver, kidney and spleen, disturbed iron metabolism, increased IL-6 level and hepcidin mRNA expression, and decreased Epo compared to CON rats. But all the aforementioned abnormalities in DIO rats were improved in DIO + CIHH rats. Conclusions CIHH improves iron metabolism disorder in obese rats possibly through the down-regulation of hepcidin by decreasing IL-6 and increasing Epo.

Funder

Hebei Province Science and Technology Plan Project

Hebei Province Medical Science Research Key Project

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3