Author:
Prabusankarlal Kadayanallur Mahadevan,Thirumoorthy Palanisamy,Manavalan Radhakrishnan
Abstract
AbstractThe objective of this study is to assess the combined performance of textural and morphological features for the detection and diagnosis of breast masses in ultrasound images. We have extracted a total of forty four features using textural and morphological techniques. Support vector machine (SVM) classifier is used to discriminate the tumors into benign or malignant. The performance of individual as well as combined features are assessed using accuracy(Ac), sensitivity(Se), specificity(Sp), Matthews correlation coefficient(MCC) and area AZ under receiver operating characteristics curve. The individual features produced classification accuracy in the range of 61.66% and 90.83% and when features from each category are combined, the accuracy is improved in the range of 79.16% and 95.83%. Moreover, the combination of gray level co-occurrence matrix (GLCM) and ratio of perimeters (P
ratio
) presented highest performance among all feature combinations (Ac 95.85%, Se 96%, Sp 91.46%, MCC 0.9146 and AZ 0.9444).The results indicated that the discrimination performance of a computer aided breast cancer diagnosis system increases when textural and morphological features are combined.
Publisher
Springer Science and Business Media LLC
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献