Image recognition performance enhancements using image normalization

Author:

Koo Kyung-Mo,Cha Eui-Young

Abstract

AbstractWhen recognizing a specific object in an image captured by a camera, we extract local descriptors to compare it with or try direct comparison of images through learning methods using convolutional neural networks. The more the number of objects with many features, the greater the number of images used in learning, the easier it is to compare features. It also makes it easier to detect if the image contains the feature, thus helping generate accurate recognition results. However, there are limitations in improving the recognition performance when the feature of the object to be recognized in the image is significantly smaller than the background area or when the area of the image to be learned is insufficient. In this paper, we propose a method to enhance the image recognition performance through feature extraction and image normalization called the preprocessing process, especially useful for electronic objects with few distinct recognition characteristics due to functional/material specificity.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference19 articles.

1. Lowe DG (1990) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on, vol 2. IEEE, New York, pp 1150–1157

2. Lindeberg Ty (1994) Scale-space theory: a basic tool for analysing structures at different scales. J Appl Stat 21(2):224–270

3. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV 2006. pp 404–417

4. Calonder M, Lepetit V, Strecha C, Fua P (2010) BRIEF—binary robust independent elementary features. In: Computer vision–ECCV 2010. pp 778–792

5. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB—an efficient alternative to SIFT or SURF. In: 2011 IEEE international conference on computer vision (ICCV). IEEE, New York, pp 2564–2571

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3