Reducing the effects of DoS attacks in software defined networks using parallel flow installation

Author:

Imran Muhammad,Durad Muhammad Hanif,Khan Farrukh AslamORCID,Derhab Abdelouahid

Abstract

Abstract Software defined networking (SDN) is becoming more and more popular due to its key features, such as monitoring, fine-grained control, flexibility and scalability. The centralized control of SDN makes it vulnerable to various types of attacks, e.g., flooding, spoofing, and denial of service (DoS). Among these attacks, DoS attack has the most severe impact because it degrades the performance of the SDN by overloading its different components, i.e., controller, switch, and control channel. This impact becomes more prominent in SDNs having fine-grained control over traffic for monitoring and management purposes, where large numbers of flow rules are installed. Existing approaches handle DoS attacks in SDN either by dropping malicious packets or by aggregating flow rules, resulting in a legitimate packet drop or loss of fine-grained control over network traffic. In this paper, a parallel flow installation approach is proposed to reduce the effects of DoS attacks, without losing the monitoring capability and fine-grained control over network traffic. The proposed approach installs flow rules in all switches along the path from the source to the destination on a single request from the source; resulting in a considerable reduction of control channel traffic and controller’s utilization. The proposed approach is evaluated by comparing it with the basic SDN controller. The simulation results show that the proposed approach increases the SDN performance in terms of CPU utilization, response time, flow requests, and control channel bandwidth.

Funder

Higher Education Commision, Pakistan

Deanship of Scientific Research, King Saud University

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TPAAD: Two‐phase authentication system for denial of service attack detection and mitigation using machine learning in software‐defined network;International Journal of Network Management;2024-01-12

2. Cyber insurance: state of the art, trends and future directions;International Journal of Information Security;2023-01-16

3. Detection and Mitigation of DDoS attack in Software Defined Networking: A Survey;2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS);2022-04-07

4. A survey on DoS/DDoS mitigation techniques in SDNs: Classification, comparison, solutions, testing tools and datasets;Computers and Electrical Engineering;2022-04

5. Mitigating DoS Attacks in Software Defined Networks;2022 International Conference for Advancement in Technology (ICONAT);2022-01-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3