Personalized fitting recommendation based on support vector regression

Author:

Li Weimin,Li Xunfeng,Yao Mengke,Jiang Jiulei,Jin Qun

Abstract

AbstractCollaborative filtering (CF) is a popular method for the personalized recommendation. Almost all of the existing CF methods rely only on the rating data while ignoring some important implicit information in non-rating properties for users and items, which has a significant impact on the preference. In this study, considering that the average rating of users and items has a certain stability, we firstly propose a personalized fitting pattern to predict missing ratings based on the similarity score set, which combines both the user-based and item-based CF. In order to further reduce the prediction error, we use the non-rating attributes, such as a user’s age, gender and occupation, and an item’s release date and price. Moreover, we present the deviation adjustment method based on the support vector regression. Experimental results on MovieLens dataset show that our proposed algorithms can increase the accuracy of recommendation versus the traditional CF.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference33 articles.

1. Bank M, Franke J (2010) Social networks as data source for recommendation systems. E-commerce and web technologies. Lecture Notes in Business Information Processing, vol 61, pp 49–60

2. Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intel 2009:19 Article ID 421425

3. Yu K, Schwaighofer A, Tresp V, Xiaowei Xu, Kriegel H-P (2004) Probabilistic memory-based collaborative filtering. IEEE Trans Knowl Data Eng 16(1):56–69

4. Jeong B, Lee J, Cho H (2010) Improving memory-based collaborative filtering via similarity updating and prediction modulation. Inf Sci 180(5):602–612

5. Pennock DM, Horvitz E, Lawrence S, Giles CL (2000) Collaborative filtering by personality diagnosis: a hybrid memory- and model-based approach. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pp 473–480

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3