Context-aware recommender for mobile learners

Author:

Benlamri Rachid,Zhang Xiaoyun

Abstract

AbstractAs mobile technologies become widespread, new challenges are facing the research community to develop lightweight learning services adapted to the learner’s profile, context, and task at hand. This paper attempts to solve some of these challenges by proposing a knowledge-driven recommender for mobile learning on the Semantic Web. The contribution of this work is an approach for context integration and aggregation using an upper ontology space and a unified reasoning mechanism to adapt the learning sequence and the learning content based on the learner’s activity, background, used technology, and surrounding environment. Whenever context change occurs, the system identifies the new contextual features and translates them into new adaptation constraints in the operating environment. The proposed system has been implemented and tested on various mobile devices. The experimental results show many learning scenarios to demonstrate the usefulness of the system in practice.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Reference61 articles.

1. Teo CB, Gay RKL: A knowledge-driven model to personalized e-Learning. ACM J Educ Resour Comput 2006, 6(1):39–53.

2. Davies J, Lytras M, Sheth A: Semantic web based knowledge management. IEEE Internet Comput 2007, 10: 14–16.

3. Zouaq A, Nkambou R: A Survey of Domain Ontology Engineering: Methods and Tools. In Advances in Intelligent Tutoring Systems. Springer-Verlag, Berlin Heidelberg; 2010:103–119.

4. Wu J: An Ontology-Based Context Awareness Approach in Autonomous Mobile Learning. In Proc. of Int. Conference on e-Business and e-Government ICEE2010, Guangzhou, China; 2010.

5. Henze N, Dolog P, Nejdl W: Reasoning and ontologies for personalized e-Learning in the semantic web. Educ Technol Soc 2004, 7(4):82–97.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Architectures for Adaptive Mobile Learning Systems: A Systematic Literature Review;Applied Sciences;2024-05-25

2. Does the Type of Recommender System Impact Users' Trust? Exploring Context-Aware Recommender Systems in Education;2023 IEEE International Conference on Advanced Learning Technologies (ICALT);2023-07

3. Towards the significance of taxi recommender systems in smart cities;Concurrency and Computation: Practice and Experience;2022-11-04

4. Semantic-Based Dynamic Service Adaptation in Context-Aware Mobile Cloud Learning;Cybernetics and Information Technologies;2022-09-01

5. A systematic review of ontology use in E-Learning recommender system;Computers and Education: Artificial Intelligence;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3