Abstract
Abstract
Location-based mobile marketing recommendation has become one of the hot spots in e-commerce. The current mobile marketing recommendation system only treats location information as a recommended attribute, which weakens the role of users and shopping location information in the recommendation. This paper focuses on location feedback data of user and proposes a location-based mobile marketing recommendation model by convolutional neural network (LBCNN). First, the users’ location-based behaviors are divided into different time windows. For each window, the extractor achieves users’ timing preference characteristics from different dimensions. Next, we use the convolutional model in the convolutional neural network model to train a classifier. The experimental results show that the model proposed in this paper is better than the traditional recommendation models in the terms of accuracy rate and recall rate, both of which increase nearly 10%.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献