Mobile marketing recommendation method based on user location feedback

Author:

Yin ChunyongORCID,Ding Shilei,Wang Jin

Abstract

Abstract Location-based mobile marketing recommendation has become one of the hot spots in e-commerce. The current mobile marketing recommendation system only treats location information as a recommended attribute, which weakens the role of users and shopping location information in the recommendation. This paper focuses on location feedback data of user and proposes a location-based mobile marketing recommendation model by convolutional neural network (LBCNN). First, the users’ location-based behaviors are divided into different time windows. For each window, the extractor achieves users’ timing preference characteristics from different dimensions. Next, we use the convolutional model in the convolutional neural network model to train a classifier. The experimental results show that the model proposed in this paper is better than the traditional recommendation models in the terms of accuracy rate and recall rate, both of which increase nearly 10%.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-Enhanced Spatio-Temporal Interval Aware Network for Next POI Recommendation in Mobile Environment;Journal of Internet Technology;2024-07-31

2. Convolutional neural network and recommendation algorithm for the new model of college music education;Entertainment Computing;2024-01

3. Understanding and modeling user behavior for recommendation systems;AIP Conference Proceedings;2024

4. Recommendation Systems: Enhancing Personalization and Customer Experience;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

5. A deep multi-embedding model for mobile application recommendation;Decision Support Systems;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3