Abstract
AbstractThe rapidly increasing pervasiveness and integration of computers in human society calls for a broad discipline under which this development can be studied. We argue that to design and use technology one needs to develop and use models of humans and machines in all their aspects, including cognitive and memory models, but also social influence and (artificial) emotions. We call this wider discipline Behavioural Computer Science (BCS), and argue in this paper for why BCS models should unify (models of) the behaviour of humans and machines when designing information and communication technology systems. Thus, one main point to be addressed is the incorporation of empirical evidence for actual human behaviour, instead of making inferences about behaviour based on the rational agent model. Empirical studies can be one effective way to constantly update the behavioural models. We are motivated by the future advancements in artificial intelligence which will give machines capabilities that from many perspectives will be indistinguishable from those of humans. Such machine behaviour would be studied using BCS models, looking at questions about machine trust like “Can a self driving car trust its passengers?”, or artificial influence like “Can the user interface adapt to the user’s behaviour, and thus influence this behaviour?”. We provide a few directions for approaching BCS, focusing on modelling of human and machine behaviour, as well as their interaction.
Funder
Norwegian Research Council
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献